
International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 1212
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

A Novel Approach for Test Path Generation and
Prioritization of UML Activity Diagrams using Tabu

Search Algorithm
Gargi Bhattacharjee, Priya Pati

Abstract— Software testing is highly vital to the development of any software. Testing ensures the quality of software and in turn increases its
reliability and robustness. The prime focus lies in minimizing the expenses incurred in testing. To test software, the major problem lies in
generation of test cases. Software specifications are the main sources for generating them. Software specifications may be UML diagrams, formal
language specification, or natural language description. Testing professionals have now shifted their attention to UML. The software specification
used in this paper is UML Activity Diagram. While testing the software, we need to identify all the paths in order to ensure complete testing. Test
paths in software can be identified through existing algorithms. But the problem arises when we have to find out the most critical path among
them as they are the ones most likely to be executed. In this paper, we have employed a Meta heuristic approach called tabu search to find out
the path with highest priority so that it can be tested first. Identifying the most critical path increases, the testing efficiency.

Index Terms— Path Coverage, Software Testing,Tabu Search Algorithm, Test case generation, Test path prioritization and UML Activity Dia-
gram.

—————————— ——————————

1 INTRODUCTION
Software engineering is a discipline concerned with all as-
pects of software right from its inception to its acceptance.
Software testing [1] plays a vital role in quality control of
the software. Testing aims at detecting errors in the soft-
ware and is carried out by executing the program on a set of
tests and then comparing the actual outputs with the ex-
pected outputs. As software testing consumes about 50% of
software development effort, test case generation plays a
crucial role. Exhaustive testing is not possible because there
are no limits on how much we can test. Thus, to limit the
process of testing, the concept of testing criteria is used. Sat-
isfying the testing criteria marks an end to testing process.
As the complexity and size of software systems grow, more
and more time and manpower are required for testing.
Manual testing is so labor-intensive and error-prone that it
becomes necessary to automate the testing techniques. The
testing effort can be categorized under three heads: test case
generation, test execution, and test evaluation. Since test
case generation is the core of any testing process and the
other two depend on it, construction of test cases is more
challenging and difficult.

Earlier test cases were designed based on the source code.
Their inception started only after the codes had been writ-
ten. Thus it made the testing process more time consuming.
In order to reduce the time consumption, testers started
shifting their attention to software specifications. Software
specifications are the main sources for generating test cases.
Software specification can be in the form of UML models,
formal language specification or natural language descrip-
tion. Researchers and testing professionals focused on de-
signing models using UML. Since model based testing can
be planned at an early stage of the software development,
testing and coding can be done concurrently, thereby pro-
ducing the test cases in advance and reducing the develop-
ment time. The early availability of test cases makes the test
planning more effective. The Unified Modeling Lan-
guage (UML) [2], [3] is a standardized, general-
purpose modeling language. UML includes a set of graphic
notation techniques to create visual models of object-
oriented software. UML provides a number of diagrams to
describe particular aspects of software artifacts. These dia-
grams can be classified depending on whether they are in-
tended to describe the structural or behavioral aspects of
systems. One such diagram which shows the dynamic na-
ture of the system is the activity diagram. It is simple and
easy to understand the flow of logic in the system.

In this paper, we use UML activity diagram as design speci-
fication. We have proposed a technique for prioritizing the
test paths derived from UML Activity diagram using tabu
search algorithm. Thus we are able to find out the most er-
ror prone path in the software. The paper is structured in
the following way: In next section, we present the related
works of activity diagrams used for generating test cases.
Section 3, 4, and 5 presents a briefing about the related con-

————————————————
• Gargi Bhattacharjee pursued her masters in software engineering from BIT

Mesra, India. E-mail: gargib.07@gmail.com

• Priya Pati is a lecturer in Comp Sc & Engg Dept, NIT Srinagar, India.
Email: priya.tulu@gmail.com

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Visual_modeling
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 1213
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

cepts used, the methodology used in finding out the most
critical path and the experimental evaluation of the meth-
odology used respectively. The last section gives an insight
about the future aspect of the work.

2 RELATED WORK
This section reviews the existing work where activity dia-
grams are used for generating test cases. Different tech-
niques are considered with different methods to generate
test cases. Each of the techniques used has its own ad-
vantages and disadvantages.

Chen Mingsong, Qiu Xiaokang, and Li Xuandong [4] used
UML activity diagrams as design specifications, and pre-
sented an automatic test case generation approach. The ap-
proach first randomly generated abundant test cases for a
JAVA program under testing. Then, by running the pro-
gram with the generated test cases, they got the correspond-
ing program execution traces. Last, by comparing these
traces with the given activity diagram according to the spe-
cific coverage criteria, they got a reduced test case set which
met the test adequacy criteria. The approach can also be
used to check the consistency between the program execu-
tion traces and the behavior of UML activity diagrams. De-
basish Kundu and Debasis Samanta [5] augmented the ac-
tivity diagram with necessary test information. Then they
converted the activity diagram into an activity graph. And
finally form the activity graph they generated the test cases.
Pakinam N. Boghdady et al. [6] proposed an automated ap-
proach for generating test cases from activity diagrams. The
proposed model introduced an algorithm that automatically
creates a table called Activity Dependency Table (ADT),
and then uses it to create a directed graph called Activity
Dependency Graph (ADG). The ADT is constructed in a de-
tailed form that makes the generated ADG cover all the
functionalities in the activity diagram. Finally the ADG
with the ADT are used to generate the final test cases.
Hyungchoul Kim et al [7] proposed a method to generate
test cases from UML activity diagrams that minimizes the
number of test cases generated while deriving all practically
useful test cases. Their method first built an I/O explicit ac-
tivity diagram from an ordinary UML activity diagram and
then transformed it into a directed graph, from which test
cases for the initial activity diagram were derived. This
conversion was performed based on the single stimulus
principle, which helped avoid the state explosion problem
in test generation for a concurrent system. Supaporn Kan-
somkeat et al [8] in their paper proposed a Condition-
Classification Tree Method (CCTM) that extended the Clas-
sification-Tree Method by using activity diagrams.

Initially, an activity diagram was analyzed to gather control
flow information based on decision points and guard condi-
tions. Then, this information was used to derive Condition-
Classification Trees. Finally, the trees were used to generate
a test case table and then test cases. Wang Linzhang, et al [9]

proposed an approach to generate test cases directly from
UML activity diagram using gray-box method. In this ap-
proach, test scenarios are directly derived from the activity
diagram modeling an operation. Then all the information
for test case generation, i.e. input/output sequence and pa-
rameters, the constraint conditions and expected object
method sequence, was extracted from each test scenario. At
last, the possible values of all the input/output parameters
were generated by applying category partition method, and
test suite could be systematically generated to find the in-
consistency between the implementation and the design. A
prototype tool named UMLTGF had been developed to
support the above process.

Once the test cases were generated, focus laid on optimizing
them. Researchers even used meta heuristic approach like
genetic algorithm to optimize the generated test cases.
Praveen R Srivastava et al. [10] in his paper presented a
method for optimization of test cases by identifying the
most critical path clusters in a program. They did this by
developing a variable length Genetic Algorithm that select-
ed the software path clusters which weighted high in ac-
cordance to the criticality of the path. Sangeeta Sabhwal,
Ritu Sibal, and Chayanika Sharma [11] considered in their
paper a novel approach where the testing efficiency was op-
timized by applying the genetic algorithm on the test data.
For requirement change, a stack based approach for assign-
ing weights to the nodes of the activity diagram was con-
sidered. The test paths were generated from the control
flow graph which was derived from the activity diagram. In
their study they found that the approach used was signifi-
cant to identify location of the fault in the implementation
and thus reduce the testing efforts. A.V.K. Shanthi [12] in
her paper implemented genetic algorithm to prioritize the
test cases derived from the activity diagram using the activ-
ity dependency table, to identify the error prone path in a
software construct.

Not much work has been done using tabu search for priori-
tization of test cases. A.V.K Shanthi et al [13] proposed a
methodology based on tabu search algorithm to prioritize
the test cases. They used UML Activity Diagram, from it;
they constructed the Activity Dependency table (ADT), and
then generated the test paths. The test paths were then pri-
oritized by using the Tabu search algorithm.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 1214
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

3 RELATED CONCEPTS

Tabu Search Algorithm- Tabu search [14], [15] is a meta
heuristic local search algorithm that can be used for solv-
ing combinatorial optimization problems (problems where
an optimal ordering and selection of options is desired). Ta-
bu search uses a local or neighborhood search procedure to
iteratively move from one potential solution ‘x’ to an im-
proved solution x' in the neighborhood of ‘x’, until some
stopping criterion has been satisfied. It carefully explores
the neighborhood of each solution as the search progresses.
The solutions admitted to the new neighborhood, N*(x), are
determined through the use of memory structures. Using
these memory structures, the search progresses by iterative-
ly moving from the current solution ‘x’ to an improved so-
lution x' in N*(x). The method is illustrated with the help of
a flow diagram in Fig 1.

 Figure 1: Flow diagram for Tabu Search

To evaluate the fitness function, we make use of the In-
formation Flow metrics. IF metrics are applied to the com-
ponents of system design. Here we have considered the
nodes as components. For a node A,

IF (A) = [FAN_IN (A) * FAN_OUT (A)] 2

Where “FAN_IN” is simply a count of the number of other
nodes that can call, or pass control, to node A and “FAN

OUT” is the number of components that are called by node
A. The power component shows the non-linear nature of
complexity. Thus the IF of a node gives us its fitness func-
tion.

A control flow graph (CFG) is a representation, us-
ing graph notation, of all paths that might be traversed
through a program during its execution. Since here we use
an activity diagram, the nodes represent actions (activity,
method execution) and the arcs indicate the flow of control
from one action to another.

In our approach, we consider the path coverage criteria. The
path coverage criterion ensures that all the activity paths in
the graph have been traversed.

4 PROPOSED METHODOLOGY
This section illustrates the details of our proposed approach
for test case generation and prioritization using Tabu Search
Algorithm. Initially we create the activity diagram. Based
on the Activity Diagram, we construct an Activity Depend-
ency Table (ADT). We construct a CFG based on the ADT.
We then apply DFS algorithm to generate the possible test
paths and then by applying Tabu Search, we get the priori-
tized path. Our methodology is demonstrated through the
flow diagram in Fig 2.

Figure 2: Flow diagram for Test case generation and prioritiza-
tion

PROCEDURE

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Combinatorial_optimization
http://en.wikipedia.org/wiki/Local_search_(optimization)
http://en.wikipedia.org/wiki/Depiction
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Execution_(computers)

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 1215
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

1. Create an Activity Diagram. It can be created by any
UML Modeling tool like IBM’s Rational Rose or
MagicDraw.

2. From the Activity Diagram, generate the Activity De-
pendency Table. The table clearly shows the depend-
ency among the activities. Thus, with its help, we can
construct the control flow graph (CFG).

3. Construct the CFG ‘G’.

4. Calculate fitness function ‘fit_func’ of each node.

5. Apply DFS algorithm to generate the test paths.

6. To apply tabu search to the newly generated test
paths, we create 2 memory structures and name it
‘best_path’ and ‘next_soln’. ‘best_path’ stores the path of
prioritized nodes i.e. it stores the critical path and
‘next_soln’ stores the possible nodes in the neighbour-
hood. We also create a counter variable ‘count’ to keep
track of the no of solutions of the neighbourhood. We
then carry out the following steps:

I. Visit the root node and store it in best_path.

II. Check the neighbourhood and store it in next_soln
and store the no. of solutions of the neighbour-
hood in count.

a. If count has 1 solution, copy the node in
next_soln to best_path and break.

b. If count contains more than 1 solution,
check for the fitness function ‘fit_func’

i. If the nodes have unequal fitness
values, move to the node with high-
est fitness value. Copy the node in
next_soln to best_path and break.

ii. If the nodes have equal fitness value,

 for each node

 while (count >=1)

if (count = = 1)

Move to the next node in
next_soln

 else

Store the nodes traversed in
best_path

Break;

 End if

End while

 End for

III. Move to the next node in the neighbourhood.

IV. Repeat the process until it reaches the leaf node.

V. best_path gives the prioritized path.

7. The generated test paths are checked against cy-
clomatic complexity.

5 EXPERIMENTAL RESULTS
 CASE STUDY: LIBRARY MANAGEMENT SYSTEM

1. We explain our proposed method by taking the activity
diagram (Fig 3) of Library Management System. This
diagram was made using IBM’s Rational Rose.

Figure 3: Activity diagram of library management

system

2. With the help of the activity diagram, we generate a de-

pendency table (table 1).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 1216
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 Table 1: ADT of library management system

The table consists of the following fields: - Symbol,
Activity Name, Dependency and the Controlling Enti-
ty. Symbol is used to represent the activities in the di-
agram; Activity Name suggests the name of the activi-
ty; Dependency indicates the dependencies of the activ-
ity on the previous activities and Controlling Entity
shows the entity which controls the corresponding ac-
tivity.

3. The CFG ‘G’ (fig 4) is generated from the dependency

table. With the help of the dependencies, we map the
nodes in their respective sequence.

Figure 4: Control Flow Graph ‘G’

4. On applying DFS algorithm, the possible test paths (fig

5) are generated.

Figure 5: Generated Test Paths

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 1217
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

5. Once on obtaining the test paths, by applying Tabu
Search, we get the prioritized path (fig 6). The priori-
tized path shows the path which is most likely to be exe-
cuted, thus making it the most critical one.

Figure 6: Prioritized Test Path

6. The generated test paths are checked against cyclomatic

complexity.

Cyclomatic complexity for a CFG is calculated by:
V (G) = E-N+2; where E is the no of edges and N is the
no of nodes in the CFG respectively.
Or V (G) = P+1; where P is the no of predicates in the
CFG.
Based on the equations; V (G) = E-N+2;

 Here E= 16, N= 14
 V (G) = 16-14+2 =4
Or V (G) = P+1; here P= 3
 V (G) = 3+1= 4
The cyclomatic complexity of the graph is 4 and the no
of test paths generated is also 4. Thus, it validates the
test paths generated.

6 CONCLUSION AND FUTURE WORK
In this paper, we showed that Tabu Search Algorithm is applied to
Activity Diagram. This can also be applied to other UML Behav-
ioral Models like Use case, Sequence, Collaboration, State Chart
diagrams for generating and prioritizing test cases. The approach
used is capable of detecting faults, like faults in loops, synchroni-
zation faults, etc. Other heuristic approaches (particle swarm op-
timization, ant colony optimization, simulated annealing etc.) can
also be applied in prioritizing the test paths. A hybrid algorithm
can also be developed combing some features of the existing heu-
ristic algorithms with tabu search algorithm to find out the critical
path in a more efficient way.

ACKNOWLEDGMENT
The authors wish to thank Dr. K. S. Patnaik who is currently
working as an Assosiate Professor in Birla Institute of Tech-
nology, Mesra in the Department of Computer Science and
Engineering for his valuable guidance during this work.

REFERENCES
[1] B.Bezier, Software Testing Techniques, 2nd edition, Dreamtech Press,

2004.
[2] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-

guage Reference Manual, Addison-Wesley, 2001.
[3] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-

guage User Guide, Addison-Wesley, 2001.

[4] C. Mingsong, Q. Xiaokang, and L. Xuandong,. Automatic test case
generation for UML activity diagrams, in 2006 international workshop
on Automation of software test, pp. 2-8, 2006.

[5] Debasish Kundu, Debasis Samanta,. A Novel Approach to Generate Test
Cases from UML Activity Diagrams, Journal of Object Technology, Vol.
8, No. 3, pp.65 -83, May-June 2009.

[6] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed Hashem and Mo-
hamed F.Tolba. A Proposed Test Case Generation Technique Based on Ac-
tivity Diagrams, International Journal of Engineering & Technology
IJET-IJENS Vol: 11 No: 03 June 2011.

[7] H. Kim and S. Kang and J. Baik and I. Ko. Test Cases Generation from
UML Activity Diagrams, 8th ACIS International Conference on Soft-
ware Engineering, Artificial Intelligence, Networking and Parallel/
Distributed Computing(ACIS-SNPD), IEEE Computer Society, July
2007.

[8] Kansomkeat, S., Thiket, P., Offutt, J. Generating Test Cases from UML
Activity Diagrams Using the Condition-Classification Tree Method. In:
Proceedings of the 2nd International Conference on Software Tech-
nology and Engineering (ICSTE 2010), pp. V1-62–V1-66. IEEE Com-
puter Society, Los Alamitos, CA (2010).

[9] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, and Z.
Guoliang. Generating test cases from UML activity diagram based on
gray-box method , In 11th Asia-Pacific Software Engineering Confer-
ence (APSEC04), pp. 284-291, 2004.

[10] Praveen Ranjan Srivastava, and Tai-hoon Kim. Application of genetic
algorithm in software testing International Journal of Software Engi-
neering and its Applications 3, no. 4 (2009): 87-96.

[11] Sangeeta Sabharwal, Ritu Sibal, Chayanika Sharma. Applying Genetic
Algorithm for Prioritization of Test Case Scenarios Derived from UML Di-
agrams, International Journal of Computer Science Issues, vol.8, issue
3, no.2, May 2011, pp. 433-444.

[12] A.V.K. Shanthi and G. Mohan Kumar. A Heuristic Technique for Auto-
mated Test Cases Generation from UML Activity Diagram, Journal of
Computer Science and Applications. Volume 4, Number 2 (2012), pp.
75-86

[13] A.V.K.Shanthi and G.Mohan Kumar. A Novel Approach for Automated
Test Path Generation using TABU Search Algorithm, International Jour-
nal of Computer Applications (0975 – 888) Volume 48– No.13, June
2012.

[14] Fred Glover. Tabu Search - Part 1. ORSA Journal on Computing 1 (2):
190–206. 1989.

[15] Fred Glover. Tabu Search - Part 2. ORSA Journal on Computing 2 (1):
4–32. 1990.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related work
	3 Related concepts
	4 Proposed methodology
	5 EXPERIMENTAL RESULTS
	6 Conclusion and future work
	Acknowledgment
	References

